
Two issues with GSUB/GPOS conditions
Skef Iterum

July 21, 2023

1 Introduction

This is a quick discussion of two potential problems with the current OpenType condition set

specification, along with possible solutions. The first relates to performance and subtable sizes

when the total number of condition sets used across multiple GSUB or GPOS features gets large.

The second has to do with a relevant case that isn’t handled. I start with some background on

single-table condition cases.

2 Background: The single feature case

If you have one relevant axis and one substitution, things are very simple. For example you want

to use rvrn to substitute a double-slash dollar sign at normalized wght -.5, with a single-slash

dollar sign used elsewhere, you’ll wind up with one feature variation record using the single

condition -1 <= wght <= -0.5 to override the default feature subtable containing the single-slash

dollar sign.

-1 -0.5 0 0.5 1
wght

dollar.sub dollar

Add additional substitutions, all still on a single relevant axis, and things stay simple: the

number of FeatureVariation records needed is the number of substitutions needed. So if the cent

glyph needs a substitution at wght 0 and the euro glyph needs one at wght 0.5, you just need

three FeatureVariation records in addition to the base feature subtable. Each new substitution

adds a new region.

1



Two issues with GSUB/GPOS conditions 2

-1 -0.5 0 0.5 1
wght

dollar.sub

cent.sub

euro.sub

dollar

cent.sub

euro.sub

dollar

cent

euro.sub

dollar

cent

euro

Things get messier with two axes. Assume a second axis foo with these three substitutions:

dollar at wght -.5, foo .5; cent at wght 0, foo 0; and euro at wght .5, foo -.5. These add 6 regions

in addition to the feature table, for a total of seven combinations. (This would be worse if there

was more than one substitution point per axis.)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
foo

wght

dollar.sub

cent.sub

euro.sub

dollar
cent
euro

1 2 3

4 5

6

Broadly speaking there are two ways of encoding these regions. One might be called “ge-



Two issues with GSUB/GPOS conditions 3

ometric”, in which each region is distinct. This involves more conditons but smaller condition

sets.

1) -1 <= wght <= -0.5 , -1 <= foo <= -0.5 : dollar.sub , cent.sub , euro.sub

2) -0.5+ <= wght <= 0 , -1 <= foo <= -0.5 : dollar , cent.sub , euro.sub

3) -1 <= wght <= -.5 , -0.5+ <= foo <= 0 : dollar.sub , cent.sub , euro

4) -0.5+ <= wght <= 0 , -0.5+ <= foo <= 0: : dollar , cent.sub , euro

5) 0+ <= wght <= 0.5 , -1 <= foo <= -0.5 : dollar , cent , euro.sub

6) -1 <= wght <= -0.5 , 0+ <= foo <= 0.5 : dollar.sub , cent , euro

Default: dollar, cent, euro

The other might be called “logical”. This involves fewer conditions but larger condition sets.

D => -1 <= wght <= -0.5 & -1 <= foo <= 0.5

C => -1 <= wght <= 0 & -1 <= foo <= 0

E => -1 <= wght <= 0.5 & -1 <= foo <= -0.5

1) D & C & E : dollar.sub , cent.sub , euro.sub

2) C & E : dollar , cent.sub , euro.sub

3) E : dollar , cent , euro.sub

4) D & C : dollar.sub , cent.sub , euro

5) C : dollar , cent.sub , euro

6) D : dollar.sub , cent , euro

Default: dollar, cent, euro

The logical approach works because the search through feature variation records stops the full

condition set is met. This means the list can start with a conjunction of all glyph-specific regions

and then followed by less and less specific conjunctions. In effect, the more specific conjunctions

earlier in the list mask regions of the less specific, later entries.

This need to specify each region one way or another is an inherent part of the feature variations

mechanism. It may put practical limits on the number of separate substitutions in a given feature,

but avoiding that problem would require an entirely different approach.



Two issues with GSUB/GPOS conditions 4

3 Problem one: Feature interdependence with substitution

Now suppose that you have a feature with three substitutions on one axis, as well as a different

feature with three entirely unrelated substitutions on a different axis. For example, dollar changes

at wght -.5, cent at wght 0, and euro at wght .5, while one changes at foo -.5, two at foo 0, and

three at foo .5.

Although these substitutions do not seem to be related in the abstract, and will probably not

appear to be related when encoded in a feature file, the feature compiler must treat them as related

when building the GSUB feature variation subtable in its present form. This is because there is

only one unified list of feature variation records per table (GSUB or GPOS). So the above pattern

of substitution will not result in 6 regions plus the default (3 for wght, 3 for foo), but 15.



Two issues with GSUB/GPOS conditions 5

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
foo

wght

dollar.sub cent.sub euro.sub

one.sub

two.sub

three.sub

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

With a logical encoding those would be (with redundant conditions omitted):

D => -1 <= wght <= -0.5

C => -1 <= wght <= 0

E => -1 <= wght <= 0.5

1 => -1 <= foo <= -0.5

2 => -1 <= foo <= 0

3 => -1 <= foo <= 0.5

1) D & 1 : dollar.sub , cent.sub , euro.sub , one.sub , two.sub , three.sub

2) C & 1 : dollar , cent.sub , euro.sub , one.sub , two.sub , three.sub

3) E & 1 : dollar , cent , euro.sub , one.sub , two.sub , three.sub

4) 1 : dollar , cent , euro , one.sub , two.sub , three.sub



Two issues with GSUB/GPOS conditions 6

5) D & 2 : dollar.sub , cent.sub , euro.sub , one , two.sub , three.sub

6) C & 2 : dollar , cent.sub , euro.sub , one , two.sub , three.sub

7) E & 2 : dollar , cent , euro.sub , one , two.sub , three.sub

8) 2 : dollar , cent , euro , one , two.sub , three.sub

9) D & 3 : dollar.sub , cent.sub , euro.sub , one , two , three.sub

10) C & 3 : dollar , cent.sub , euro.sub , one , two , three.sub

11) E & 3 : dollar , cent , euro.sub , one , two , three.sub

12) 3 : dollar , cent , euro , one , two , three.sub

13) D : dollar.sub , cent.sub , euro.sub , one , two , three

14) C : dollar , cent.sub , euro.sub , one , two , three

15) E : dollar , cent , euro.sub , one , two , three

def : dollar , cent , euro , one , two , three

More generally, this means that whatever features use this table, the compiler must carve up

the geometry across all of them. Therefore the scaling problem is just not within a feature but

across all features.

This seems like a flaw in the current specification, especially because it is not an inherent

part of the mechanism. I’ll suggest one approach to fixing it below. However, some people might

wonder whether we’ll ever see more than a few regions in practice. With that in mind, let’s move

on to problem two.

4 Problem two: Substitutions with interdependent axes

Consider the archetypal case of substitution: A variable font has two glyphs for the dollar sign,

one with two vertical strokes and another with just one stroke. The designer wants to switch

between the glyphs when they judge that the strokes are too thick to leave room for each other.

In the usual examples this decision is tied to the wgwt axis.

However, the thickness of a stroke is not necessarily just a function of one axis. Indeed, the

opsz axis, which is registered and already used in some variable fonts, also changes the thickness

of strokes, with strokes getting somewhat thinner as the axis increases. If a designer’s decision

about when to substitute is based on thickness, their preference across both axes might look

something like this:



Two issues with GSUB/GPOS conditions 7

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
opsz

wght

Unfortunately this is impossible to express directly with the currently available mechanisms.

The best you can do is a stepwise approximation, perhaps something like this:



Two issues with GSUB/GPOS conditions 8

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
opsz

wght

Therefore, even for what isn’t all that good an approximation, we now have eight regions plus

a default just for one glyph across two axes. If a different glyph needs similar treatment along a

different line on the same combination of axes, we can use the same regimentation but will then

wind up with 16 regions plus a default. And so on.

Given that such a simple case requires a significant number of regions to handle the substitution

of a single glyph, I think we would be wise to fix at least one of these problems.



Two issues with GSUB/GPOS conditions 9

5 Proposed fix for interdependent axis substitution

I’m sure there are many novel means of addressing the interdependent axis substitution problem,

but it seems easiest to choose the least novel. That is, rather than having to invent a bunch of new

machinery it seems preferable to use something already available. And in this case the easiest

option is to use a normal interpolated value, just like those already used for point locations in

glyph outline data or kerning values in GPOS.

Accordingly, suppose that we were to add Condition Table Format 2: “Condition Value”:

uint16 format Format = 2

int16 default Value at default location

uint16 deltaSetOuterIndex

uint16 deltaSetInnerIndex

This subtable specifies a varying 16 bit integer by way of its default and a delta set selected

with the Outer and Inner Indexes just as in a VariationIndex table. This will be the first case in

which an ItemVariationStore is referenced from GSUB, but references in GPOS are already to the

IVS in GDEF, so there is little reason GSUB can’t also make use of it.

The way this condition works is what you would expect: It evaluates to true when the value

is positive and false when it is 0 or negative. The font engineer making use of the condition value

is then responsible for placing the “zero line” where the designer needs it.



Two issues with GSUB/GPOS conditions 10

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
opsz

wght

-1, 1: 7500

-1, 0: 9250

-1, -1: 11000

0, 1: -2500

default: -750

0, -1: 1000

1, 1: -12500

1, 0: -10750

1, -1: -9000



Two issues with GSUB/GPOS conditions 11

-1
-0.5

0
0.5

1 -1

-0.5

0

0.5

1

-15000

-10000

-5000

0

5000

10000

15000

"try.dat" u 1:2:3

"line.dat" u 1:2:3

wght

opsz

-1 -0.5 0 0.5 1
-15000

-10000

-5000

0

5000

10000

15000

"try.dat" u 1:2:3

"line.dat" u 1:2:3

wght



Two issues with GSUB/GPOS conditions 12

-1 -0.5 0 0.5 1
-15000

-10000

-5000

0

5000

10000

15000

"try.dat" u 1:2:3

"line.dat" u 1:2:3

opsz

As a practical matter a condition value can’t directly participate in the geometric style of

region partitioning discussed above. However, they work fine with logical partitioning, and do so

regardless of which system is being used for other (format 1) conditions. (That is, you can still

break down range-based conditions geometrically and then mix those logically with a condition

value as needed.) Therefore, while some compilers might need a bit of adjustment it should be

possible to mix the two kinds of conditions as needed.

Some drafts of the avar 2 proposal note a need for a better condition mechanism. I am not

sure whether condition values can address all of that need. However, I will note that while with

traditional axes they can only define straight lines in design space, with HOI they could presumably

define curved lines, so at least in broad strokes the mechanism appears to be “HOI ready”.

6 Proposed fix for feature interdependence

This is more of a sketch than a finished proposal, as there are a lot of ways to modify the actual

subtables, adjust the versions, etc.

Conceptually, all that is needed to solve the problem is advance knowledge of which features



Two issues with GSUB/GPOS conditions 13

are encoded among the feature variation records. This list could be encoded by sorted tag in some

new subtable.

Then, as the Feature Variation records are examined in order, instead of stopping at the first

match the search stops when a record corresponding to each feature in the initial list is found.

That way the entries for different layout features can be interspersed without interfering with one

another. If the feature list is present you use the new search convention, if not you use the old one.


	Introduction
	Background: The single feature case
	Problem one: Feature interdependence with substitution
	Problem two: Substitutions with interdependent axes
	Proposed fix for interdependent axis substitution
	Proposed fix for feature interdependence

