
Feature Variations: New substitution mechanism
Skef Iterum, Adobe Inc.

August 24, 2023

Contents

1 Introduction 1

2 Problem: Condition set permutations 1

3 Proposal 1: Alternative lookup variations mechanism 6
3.1 Concept . 6
3.2 Tables . 6

3.2.1 FeatureVariations Table Format 2 . 6
3.2.2 LookupVariations Table . 7
3.2.3 LookupVariation Record . 7
3.2.4 FeatureLookups Table . 7
3.2.5 LookupCondition Record . 8
3.2.6 LookupIndexSet Table . 8

3.3 Algorithm . 8
3.4 Requirements . 9
3.5 Typical patterns . 9
3.6 Formal Properties . 9
3.7 Motivation for falseLookupIndexSet table . 10
3.8 Comparative sizes . 10

4 Proposal 2: Simplified condition negation 10
4.1 Concept . 10
4.2 Tables . 11

4.2.1 Condition Format 3 table . 11
4.2.2 Condition Format 4 table . 11

1 Introduction

This document discusses a problem with the current feature variations substitution mechanism
in OpenType and outlines an alternative mechanism to address it. The initial sketch of the new
mechanism was developed by Behdad Esfahbod and Skef Iterum in discussion on GitHub.

2 Problem: Condition set permutations

With the current feature variations system things are simple when you have one relevant axis
and one substitution. For example you want to use rvrn to substitute a double-slash dollar sign
at normalized wght -.5, with a single-slash dollar sign used elsewhere, you’ll wind up with one

1

Feature Variations: New substitution mechanism 2

feature variation record using the single condition -1 <= wght <= -0.5 to override the default
feature subtable containing the single-slash dollar sign.

-1 -0.5 0 0.5 1
wght

dollar.sub dollar

Add additional substitutions, all still on a single relevant axis, and things stay simple: the
number of FeatureVariation records needed is the number of substitutions needed. So if the cent
glyph needs a substitution at wght 0 and the euro glyph needs one at wght 0.5, you just need
three FeatureVariation records in addition to the base feature subtable. Each new substitution
adds a new region.

-1 -0.5 0 0.5 1
wght

dollar.sub

cent.sub

euro.sub

dollar

cent.sub

euro.sub

dollar

cent

euro.sub

dollar

cent

euro

Things get messier with two axes. Assume a second axis foo with these three substitutions:
dollar at wght -.5, foo .5; cent at wght 0, foo 0; and euro at wght .5, foo -.5. These add 6 regions
in addition to the feature table, for a total of seven combinations. (This would be worse if there
was more than one substitution point per axis.)

Feature Variations: New substitution mechanism 3

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
foo

wght

dollar.sub

cent.sub

euro.sub

dollar
cent
euro

1 2 3

4 5

6

Broadly speaking there are two ways of encoding these regions. One might be called “geo-
metric”, in which each region is distinct. This involves more conditions but smaller condition
sets.

1) -1 <= wght <= -0.5 , -1 <= foo <= -0.5 : dollar.sub , cent.sub , euro.sub
2) -0.5+ <= wght <= 0 , -1 <= foo <= -0.5 : dollar , cent.sub , euro.sub
3) -1 <= wght <= -.5 , -0.5+ <= foo <= 0 : dollar.sub , cent.sub , euro
4) -0.5+ <= wght <= 0 , -0.5+ <= foo <= 0: : dollar , cent.sub , euro
5) 0+ <= wght <= 0.5 , -1 <= foo <= -0.5 : dollar , cent , euro.sub
6) -1 <= wght <= -0.5 , 0+ <= foo <= 0.5 : dollar.sub , cent , euro

Default: dollar, cent, euro

The other might be called “logical”. This involves fewer conditions but larger condition sets.

D => -1 <= wght <= -0.5 & -1 <= foo <= 0.5
C => -1 <= wght <= 0 & -1 <= foo <= 0
E => -1 <= wght <= 0.5 & -1 <= foo <= -0.5

Feature Variations: New substitution mechanism 4

1) D & C & E : dollar.sub , cent.sub , euro.sub
2) C & E : dollar , cent.sub , euro.sub
3) E : dollar , cent , euro.sub
4) D & C : dollar.sub , cent.sub , euro
5) C : dollar , cent.sub , euro
6) D : dollar.sub , cent , euro

Default: dollar, cent, euro

The logical approach works because the search through feature variation records stops at
the first record where every condition in the set is true. This means the list can start with a
conjunction of all glyph-specific regions and then followed by less and less specific conjunctions.
In effect, the more specific conjunctions earlier in the list mask regions of the less specific, later
entries.

Note that because the mechanism is shared across all feature variations, the problem is no
better even when layout features are unrelated. Suppose that you have a feature with three
substitutions on one axis, as well as a different feature with three entirely unrelated substitutions
on a different axis. For example, dollar changes at wght -.5, cent at wght 0, and euro at wght .5,
while one changes at foo -.5, two at foo 0, and three at foo .5.

Although these substitutions do not seem to be related in the abstract, and will probably not
appear to be related when encoded in a feature file, the feature compiler must treat them as related
when building the GSUB feature variation subtable in its present form. This is because there is
only one unified list of feature variation records per table (GSUB or GPOS). So the above pattern
of substitution will not result in 6 regions plus the default (3 for wght, 3 for foo), but 15.

Feature Variations: New substitution mechanism 5

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
foo

wght

dollar.sub cent.sub euro.sub

one.sub

two.sub

three.sub

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

With a logical encoding those would be (with redundant conditions omitted):

D => -1 <= wght <= -0.5
C => -1 <= wght <= 0
E => -1 <= wght <= 0.5
1 => -1 <= foo <= -0.5
2 => -1 <= foo <= 0
3 => -1 <= foo <= 0.5

1) D & 1 : dollar.sub , cent.sub , euro.sub , one.sub , two.sub , three.sub
2) C & 1 : dollar , cent.sub , euro.sub , one.sub , two.sub , three.sub
3) E & 1 : dollar , cent , euro.sub , one.sub , two.sub , three.sub
4) 1 : dollar , cent , euro , one.sub , two.sub , three.sub
5) D & 2 : dollar.sub , cent.sub , euro.sub , one , two.sub , three.sub
6) C & 2 : dollar , cent.sub , euro.sub , one , two.sub , three.sub
7) E & 2 : dollar , cent , euro.sub , one , two.sub , three.sub
8) 2 : dollar , cent , euro , one , two.sub , three.sub
9) D & 3 : dollar.sub , cent.sub , euro.sub , one , two , three.sub

10) C & 3 : dollar , cent.sub , euro.sub , one , two , three.sub

Feature Variations: New substitution mechanism 6

11) E & 3 : dollar , cent , euro.sub , one , two , three.sub
12) 3 : dollar , cent , euro , one , two , three.sub
13) D : dollar.sub , cent.sub , euro.sub , one , two , three
14) C : dollar , cent.sub , euro.sub , one , two , three
15) E : dollar , cent , euro.sub , one , two , three

def : dollar , cent , euro , one , two , three

More generally, this means that whenever different condition sets are used in the same or
different layout features in the same table (GSUB, GPOS, etc.) the compiler must carve up the
geometry across all of them.

3 Proposal 1: Alternative lookup variations mechanism

3.1 Concept

As noted, in the current system a single list of condition sets is evaluated in order until one set
evaluates all true, and then whatever feature indices are listed in that entry replace the original
feature tables. Consider a different system in which the basic unit of replacement is not feature
tables but lookups, and all elements in the list are evaluated. When all conditions in a set evaluate
to true, a set of lookups associated with that condition set is added to the “current” set.

With this system, instead of building complete substitute feature tables for regions of de-
signspace, one can simply associate individual lookups with their own condition sets and build
the overall table by evaluating those condition sets.

At the end of the search, the total set of added lookups encountered is used as the list for the
corresponding feature.

3.2 Tables

The idea here is to add a new lookup variation mechanism mostly analogous to the feature
variation mechanism.

3.2.1 FeatureVariations Table Format 2

Type Name Description

uint16 majorVersion set to 2
uint16 minorVersion set to 0
Offset32 lookupVariationsOffset Offset to lookupVariations

table, 0 if unused
uint32 featureVariationRecordCount Number of feature variation

records.
FeatureVariationRecord featureVariationRecords[featureVariationRecordCount] Array of feature variation

records.

This is the same as the current FeatureVariations table format, except with a new major version
and an extra lookupVariationsOffset field. (It would also be possible to give the table a new minor

Feature Variations: New substitution mechanism 7

version instead by moving the new field to the end, at the cost of making it a bit non-standard, as
offset fields are usually positioned before record arrays.)

3.2.2 LookupVariations Table

Type Name Description

uint32 lookupVariationRecordCount Number of lookup variation
records.

LookupVariationRecord lookupVariationRecords[lookupVariationRecordCount] Array of lookup variation
records (sorted).

As each LookupVariationRecord has an associated featureIndex, the record array will be
required to be sorted by that field for faster searching.

3.2.3 LookupVariation Record

Type Name Description

uint16 featureIndex The feature table index to match (sort key)
Offset32 featureLookupsTable Offset to a FeatureLookups table

In contrast with the existing mechanism, the hierarchy puts the condition sets under the
features rather than the features under the condition sets. This is because all records for a given
feature must be searched, so it is better to only look through the records of those features that are
enabled.

3.2.4 FeatureLookups Table

Type Name Description

uint16 majorVersion set to 1
uint16 minorVersion set to 0
uint16 flags FeatureLookups qualifiers —

see below
uint32 lookupConditionCount Number of LookupCondition

records.
LookupConditionRecord lookupConditionRecord[conditionCount] Array of LookupCondition

records.

This table provides offsets to a list of LookupCondition records for the feature pointing to it.
As all records will be evaluated they can be in any order.

Flags can be assigned to indicate certain uses or behaviors for a given FeatureLookups table.
The following flags are defined.

Feature Variations: New substitution mechanism 8

Mask Name Description

0x0001 ADD_DEFAULT_LOOKUPS When this bit is set, set the initial lookup set to
the lookups included in the default Feature
table for this featureIndex. Otherwise set the
initial lookup set to the empty set.

0xFFFE Reserved Reserved for future use — set to 0.

3.2.5 LookupCondition Record

Type Name Description

Offset32 conditionSetOffset Offset to a condition set table
Offset32 trueLookupIndexSetOffset Offset to a LookupIndexSet table to add when all

conditions are true (0 if unused)
Offset32 falseLookupIndexSetOffset Offset to a LookupIndexSet table to add when at least

one condition is false (0 if unused)

This table is equivalent to an if/else structure. When all conditions are true all lookups from
the trueLookupIndexSet are added. When at least one is false the lookups from the falseLookupIn-
dexSet are added. Either entry (but not both) can be disabled by setting it to 0. As with other
condition sets a 0 offset indicates the set is always true, and therefore the entries from the
trueLookupIndexSet will be added.

3.2.6 LookupIndexSet Table

Type Name Description

uint16 lookupIndexCount Number of LookupList indices in this table.
uint16 lookupIndices[lookupIndexCount] Array of indices into the lookup list.

This table simply encodes an array of lookupIndices to be added to a set.

3.3 Algorithm

The “default” Feature table corresponding to featureIndex contains an offset to a featureParams
table and a list of lookupList indices. This algorithm allows either or both of these to be substituted
in relation to the chosen position in design space.

1. Process the featureVariationRecords in the same way as for a version 1 FeatureVariations
table:

a. Evaluate the condition set of each FeatureVariationRecord in order until every condition
of one evaluates to true.

b. If there is such a record, associate the each featureIndex listed with its new Feature
table offset

Feature Variations: New substitution mechanism 9

2. For each active feature with a LookupVariationRecord:

a. Allocate an empty feature table structure.
b. Copy any FeatureParams from the current feature table (either the replacement from

step 1 if there is one or the original Feature table for this feature).
c. If ADD_DEFAULT_LOOKUPS is set, copy list of lookups from current feature table

into the set for this feature.
d. For each LookupCondition record:

i. If all conditions are true set o = trueLookupIndexSetOffset
ii. Otherwise set o = falseLookupIndexSetOffset
iii. Copy each lookup in the LookupIndexSet at o into the set for this feature

3. For each active feature that lacks a LookupVariationRecord, use the current Feature table for
that featureIndex (either the replacement from step 1 if there is one, or the original Feature
table for the feature).

3.4 Requirements

• The initial feature table in GSUB for a given tag should be equivalent to the output of the
algorithm of that feature for the (format) default instance (all axes 0).

3.5 Typical patterns

• A given feature will typically use either the FeatureVariation or the LookupVariation subtable
but not both. The exception is if a feature alters its featureParams at points in design space
but specifies its lookups with the LookupVariation system.

• When a feature has some lookups used at every point in designspace, but cannot copy those
from the initial feature table, they can be added to the set with an initial LookupCondition
Record with a 0 conditionSetOffset. The empty condition set always evaluates to true so
the entries in the trueLookupAdditions subtable will always be added.

3.6 Formal Properties

For the purposes of this discussion assume there is an easy way to logically negate any condition.
And for the sake of simplicity ignore the falseLookupIndexSet subtable.

When a feature uses the LookupVariations system the set of lookups will be union of those
added for each condition set that evaluates to true. This is analogous to a logical “or”. A condition
set evaluates to true when all of its conditions evaluate to true, analogous to a logical “and”.
Therefore lookups are added to the set based on a disjunction of conjunctions.

Accordingly, the system is “complete” in that any lookup can be included (or excluded) accord-
ing to any arbitrary boolean formula using the following convention:

1. Convert the formula for each lookup to disjunctive normal form.
2. Pool the conjunctions used among the lookups together.
3. Create a LookupConjunction records corresponding to each individual conjunction with a

trueLookupIndexSet containing each lookup that had that conjunction in its DNF.

Feature Variations: New substitution mechanism 10

3.7 Motivation for falseLookupIndexSet table

Although the system is formally complete with the falseLookupIndexSet field, which is conceptu-
ally analogous to an “else”, it simplifies some cases.

GSUB substitutions are typically present or absent, but the variable substitution mechanism
can also be used with GPOS. Consider the archetypal GPOS case of a sudden change in kerning
between “T” and “o” when the weight (or other axis) makes the latter no longer fit under the
former. One can implement that change with clever variable kerning values but one can also
implement it by specifying two separate kerning values and switching between them.

When doing the latter, one wants one value used when a specified set of conditions is true
and the other in other cases, e.g. when at least one is false. Positively expressing the latter without
an “else” might take many separate conjunctions (according to how the conditions overlap). The
analysis is much easier with the “else”.

3.8 Comparative sizes

Using the existing system and a geometric encoding, the first dollar/euro/cent example uses the
following:

1. One Version 1 Feature Variations Table with 6 records (32 bytes)
2. Six condition set tables (36 bytes)
3. Twelve condition tables (96 bytes)
4. Six FeatureTableSubstitution Table headers (36 bytes)
5. Six FeatureTableSubstitution Records (36 bytes)
6. Six Feature Tables (44 bytes)

For a total of 280 bytes
With the alternate system the amounts are:

1. One Version 2 Feature Variations Table with 0 records (12 bytes)
2. One LookupsVariations table with 1 record (10 bytes)
3. One FeatureLookups table with 3 records (46 bytes)
4. Three condition set tables (18 bytes)
5. Six condition tables (48 bytes)
6. Three LookupIndexSet tables, each with one record (12 bytes)

For a total of 146 bytes
Obviously, the more one needs to decompose conditions with the existing system, the greater

the relative savings with the new system.

4 Proposal 2: Simplified condition negation

4.1 Concept

Many forms of logical analysis, such as reduction to disjunctive normal form benefit from an easy
means of negating a boolean variable, which in the case of feature variations corresponds to a

Feature Variations: New substitution mechanism 11

condition. With the current condition format 1, conditions that use only one of filterRangeM-
inValue or filterRangeMaxValue can be negated by adjusting the F2DOT14 value by the minimum
increment, moving it to the other field, and adjusting the original field to -1 or 1. However, there
is no general way of negating a condition that uses both filterRangeValues with a single condition.

Adobe has also introduced a separate proposal for a format 2 “Condition value”, which is not
straightforward to negate without additional support.

Therefore we suggest providing easy negations for the existing and proposed condition formats
by introducing two new versions to negate them. In effect, we use a bit in the format field to
negate the “positive” formats.

4.2 Tables

4.2.1 Condition Format 3 table

Type Name Description

uint16 format Format = 3
uint16 axisIndex Same as in format 1
F2DOT14 filterRangeMinValue Same as in format 1
F2DOT14 filterRangeMaxValue Same as in format 1

The only difference between format 1 and format 3 is that when the former evaluates to false
the latter evaluates to true and vice-versa.

An alternative to using a new format would be to stipulate that, in format 1, when the
filterRangeMinValue is greater than the FilterRangeMaxValue, the condition is negated. We would
need to decide if the inequalities were then exclusive, or if the values need to be adjusted by the
minimum F2DOT14 increment to correspond to inclusive inequalities. This saves a version number
but is not strictly compatible with existing implementations of format 1, so the specification would
need to be careful about the versioning of tables that use this new format.

4.2.2 Condition Format 4 table

Type Name Description

uint16 format Format = 4
int16 default Same as in format 2
uint16 deltaSetOuterIndex Same as in format 2
uint16 deltaSetInnerIndex Same as in format 2

The only difference between format 2 and format 4 is that when the former evaluates to false
the latter evaluates to true and vice-versa.

An alternative is to add a flags field to the format 2 with a flag to indicate that the condition
should be negated. (Some form of explicit negation is preferable to “inverting” the interpolated
value.)

Note: If the new format values are added, and assuming the various proposals are accepted
together, it might make more sense to renumber the formats to put the positive and negative
versions together.

	Introduction
	Problem: Condition set permutations
	Proposal 1: Alternative lookup variations mechanism
	Concept
	Tables
	FeatureVariations Table Format 2
	LookupVariations Table
	LookupVariation Record
	FeatureLookups Table
	LookupCondition Record
	LookupIndexSet Table

	Algorithm
	Requirements
	Typical patterns
	Formal Properties
	Motivation for falseLookupIndexSet table
	Comparative sizes

	Proposal 2: Simplified condition negation
	Concept
	Tables
	Condition Format 3 table
	Condition Format 4 table

